

北京卓悦联合生物科技有限公司

Veriti PCR 仪简易操作手册

Tel: 13051820509 E-mail: sales@westernblot.cn

E 录

	安装运行条件及注意事	项	3
=.	电源插座及开关		3
Ξ.	主菜单		3
四.	建立新方法文件		3
五.	运行 PCR		9
大.	应用软件使用		11

北京卓悦联合生物科技有限公司

一. 安装运行条件及注意事项

- 1. Veriti 可在 5℃ 40℃的环境下使用,最适环境温度为 15℃ 30℃,严禁在低于 **5**℃的环境下开机。环境湿度范围为 20 80%。
- 2. Veriti 的电源必须电压稳定,范围在 220±5V,而且接地良好(零线与地线之间的电压应当小于 3V)。Veriti 电源插头必须使用带有地线的三线插头,电压的波动及不良的接地都会直接影响 Veriti 的使用寿命。
- 3. Veriti 的前面和后面有通风口,为保持通风口的通畅,前、后两端必须离开墙壁 10 15cm,不要在仪器的 周围堆放杂物。

二. 电源插座及开关

Veriti 的电源插座和电源开关位于仪器的后面,示意图如下:

三. 主菜单

打开 PCR 仪的电源,需等待几分钟,仪器程序开始初始化。初始化完成后,显示主菜单:

Browse / New Methods	Settings Menu	Tools Menu	My Account
Shortcut	Shortcut	Shortcut	Shortcut
1	2	3	4
Shortcut	Shortcut	Shortcut	Shortcut
5	6	7	8

仪器使用触摸屏控制,点击屏幕上的图标可以建立及运行 PCR 程序。

四. 建立新方法

1. 点击"Browse/New Methods",进入 PCR 程序列表:

Run Method			Folder		Last Used 🛛 🛡	P
.M\$2*			Shared	2	007-02-15	
"auchdown_PCR*			Shared	2	007-02-15	
AmpliTaq_Gold* Time_Release*			Shared Shared		007-02-14	Page 1/3
					007-02-14	
KL_PCR*			Shared	2	007-02-14	
DC	2	P		,B,	1	Selecter 1
Start Run No	ew	View/Edit	Сору	Print	Delete	

2. 可以直接点击一个 PCR 程序,选择"Start Run"运行;点击右边的 (口) 符号,可以选择不同的文件夹。如要新 建一个 PCR 程序,点击"New",出现 PCR 程序:

3. 添加一段程序:点中上方的"Stage"位置,该位置变红;再点"Add",软件将加入一段新的程序。

修改循环数、温度、时间:点中循环次数、温度或时间位置,下方出现数字键。依次点数字键,出现合适数字后,点击"Done"确定。

5. 增加一个步骤:点"Step"位置,该位置变红;再点"Add",软件将加入一个新的步骤。

Stage 1	Stage 2		Stage 3	
× 1	× 10		× 20	
95.0	94.0		89.0	
12:00	0:15	55.0 72.0		55.0
		0:15 0:30	0.15	0:15
Step 1	Step 1	Step 2 Step 3	Step 1	Step 2
				~
	d'a l			0.
Run	Add	Delete	Options	Save

6. 删除一个步骤:点击"Step"位置,在点"Delete",软件将该步骤删除。

7. 建立梯度模式:

A. 点中一个步骤,再点"Option"键,出现如下选项

Stage 1	Stage 2		Stage 3	
× 1	× 10		% 💬	
are l	in the second se		Ramp Rate/Time	
95.0	94.0	72.0	Λ	
12:00	0:15	55.0		55.0
		0:30	AutoDelta	0.15
		0.10	¥	0,10
			VeriFlex step	
Step 1	Step 1	Step 2 Step 3	+	Step 2
<u> </u>	(Commenter of the		in n	
	(· · ·		Pause	0
	o o	l	38	O •
			→ŏ ■	

B. 点击"VeriFlex step",出现梯度创建窗口:

	Edit Run Method: LMS2							
			C	reate a Ve	eriFlex Ste	p	?	
北京	克 卓	55.0 1 - 2	56.0 9-4	57.0 5 - 6	58.0 7-8	59.0 9 - 10 1	<u>69.0</u> 1月2 限2	、司
		*Tempera	ature differer	ice between	adjacent zor	1es <= 5.0	Apply Selected to All	
		1	2	з	4	5		
		6	7	B	9	0	Cancel Done	

输入 6 个梯度温度,温度下方的"1 - 2"是指对应的 1、2 两列的加热孔,全部输好后,点击"Done"确定。注 意: 相邻的两个梯度温度之差最大不能超过 5℃!

8. 建立渐变模式:

A. 点中一个步骤,再点击"Option"键,出现如下选项

Stage 1 × 1	Stage 2		Stage 3	
95.0	94.0	72.0	Ramp Rate/Time	55.0
12:00	0:15	0:15	<u>AutoDelta</u>	0:15
Step 1	Step 1	Step 2 Step 3	VeriFlex step	Step 2
D	" *		+0 +0 ▲	G

B. 点击"Auto Delta",出现渐变模式创建窗口。

点击"Staring Cycle",输入起始循环数; 点

击 "Delta Temperature",输入温度变化值

;点击"Delta Time",输入时间变化值。

渐变模式适用于 touchdown PCR,可以提高 PCR 反应的特异性。例:输入起始循环数为 2,温度变化 值为 + 0.5℃,时间变化值为 + 5s,则表示从第 2 个循环开始,每循环一次升温 0.5℃,时间增加 5s。

9. 增加暂停步骤:

A. 点中一个步骤,再点击"Option"键,出现如下选项

× 1 95.0 / 12:00 / Step 1	× 10	55.0 72.0 0:15 0:30 Step 2 Step :	Stage 3 % ② Ramp Rate/Time AutoDelta <u>VeriFlex step</u> 11 ↓ 1	55.0 0:15 Step 2
	d'o		Pause	0+

B. 点击"Pause",出现如下窗口。

	Edit	Run Method	: LMS2				
		Add	a Pause	Before a S	Step	?	
		Start first pau	se at cycle	1 0	of 10		
		Pause every	10	cycles for	00:10 mm	1:55	
北	京卓[兑联合	计	物利	斗技	Remove 2	、司
	ı.	2	3	4	5		
	6	7	в	9	0	Cancel Done	

输入暂停的起始位置,暂停间隔和暂停时间,点"Done"确定。 上图表示每 隔 10 个循环暂停 10s, 在 10 个循环的第 1 个循环之前暂停。

10. 编辑 PCR 程序完成后,点击"Save"保存。

点击"Run Method",输入 PCR 程序名称;点击 Y,选择保存 PCR 程序的文件夹(如果要保存在 USB 文件 夹中,需要先插 U 盘)。再输入反应体积和热盖温度(这两项在运行程序时可以修改)。点击"SaveδExit"确 定。

五. 运行 PCR 程序

1. 回到 PCR 程序列表界面,选择一个新建的 PCR 程序。

Run Method		Folder	La	ist Used 🛛 🛡	
_M\$2*		Shared	200	17-02-15	
Tauchdown_PCR*		Shared	200	7-02-15	
AmpliTaq_Gold* Time_Release*		Shared 2007-02-14 Shared 2007-02-14		17-02-14	Page 1/3
XL_PCR*		Shared	200	17-02-14	
	P		æ	1	Selected: 1
Start Run New	View/Edit	Сору	Print	Delete	

2. 点击"Start Run",出现运行参数设置窗口

Reaction Volume:	10	uL
Cover Temperature:	105.0	°C
Run ID:	200702140925	
Notes:	This is a quick test for Joe's samples with a 5 * minute vortex step.	
	Start Run Start	Mult

输入反应体积和热盖温度,点击"Start Run Now"开始运行 PCR 程序。

3. 仪器运行选中的 PCR 程序,显示运行监视窗口。

А	运行状态栏:显示运行时样品温度和剩余时间	В	加热警示标志
С	阶段指示	D	步骤温度
Е	步骤时间	F	步骤指示
G	状态报告:显示日期、时间和仪器状态	н	延伸箭头:点击箭头可以显示更多的步骤

4. 暂停运行:

点击"Pause Run",仪器暂停,出现暂停选项栏

"Remaining Time"显示暂停剩余时间 "Elapse Time"显示已暂停时间

如果需要修改暂停时间,点击 ¹ (2),输入时间值,点击"Done" 确定 点击"Resume Run",结束暂停,继续运行 PCR 程序。

- 5. 终止运行:点击"Stop"可以终止整个 PCR 程序。
- 6. 反应报告:

PCR 程序结束后,仪器会自动生成反应报告,显示当次反应的各项指数。该报告可以保存和打印。

7. PCR 反应结束后,打开热盖,取出样品,关闭仪器电源。并开盖放置,使热盖和加热模块正常降温。

六. 应用软件使用

A. 使用 9700 模式运行 PCR 程序

Veriti 和 9700 具有不同的升降温控制模式,但是在 Veriti 中可以通过模式转换,使仪器运行 9700 的升降温模式。对于已在 9700 上摸索好的 PCR 程序,可以直接在 Veriti 上运行,无需再修改反应条件。 A. 在主菜单,点击"Tools Manu",

View Last Run	Calculate Tm	Convert a Method	Run TNU Te
Run Temperature Verification	Run Heated Cover Verification	Run Cycle Performance Test	Show Statist
Calibrate Touch Screen			To Previou Menu

B. 点击"Convert a Method",

C. 选中"9700 Max Mode",点击

	Convert Method S	Step 2 of 2	×
	Stage 1 Stage 2	Stage 3	
	× 1 × 35	× 1	
	1:00 0:15	72.0 72.0 0:30 7:00	
	/	0:15 Step 2 Step 3 Step 1	step 2
	Add Delete	Options	-
	Enter the original arrow button to	run method, then touch the right o proceed to save the method.	?
输入 9700 上的	PCR 反应条件,设定 I	PCR 程序,点击	箭头

箭头

D. 在保存程序窗口,输入名称,选择文件夹保存程序。

Run Method:	9700-Max-Mod	1e-
Falder	Default	
FUIGEL.		
Reaction Volume:	10 Co	over Temperature: 105.0
Notes:		
		Save & Exit

- E. 回到 PCR 程序列表界面,选择新建的 9700 模式 PCR 程序,运行程序。
- B. Tm 值计算
 - A. 在主菜单,点击"Tools Manu",

	Tools Menu	
	View Last Run Calculate Tm	Convert a Method Run TNU Test
北京	Run Temperature Verification	Run Cycle Performance Test
	Calibrate Touch Screen	To Previous Menu
	Log Off 2007-02-14 8:22 PM	User: gregor ?

B. 点击"Calculate Tm"

Tm Calculator	<
Salt Concentration: 50 mM Primer Concentration: 0.20 uN	М
Primer 1 Sequence:	
Primer 2 Sequence:	
Calculate	
Touch the fields to enter concentrations and the primer sequences, then touch Calculate Tm to calculate the melting temperatures. Maximum input for each primer sequence is 30.	?

C. 输入盐浓度和引物浓度,在"Primer 1 Sequence"和"Primer 2 Sequence"分别输入引物的序列,再点击 "Calculate",软件计算显示 Primer 1 和 Primer 2 的 Tm 值。

Tm Calculator
Salt Concentration: 50 mM Primer Concentration: 0.20 uM
Primer 1 Sequence: CGTTTTAGCT
Primer 2 Sequence: CCCCCCGTATATITITGC
TM for Primer 1: +17.6 TM for Primer 2: +59.8 Calculate
Touch the fields to enter concentrations and the primer sequences, then touch Calculate Tm to calculate the melting temperatures. Maximum input for each primer sequence is 30.

北京卓悦联合生物科技有限公司

Tel: 13051820509 E-mail: sales@westernblot.cn